- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Jiatong (2)
-
Gamper, Howard (1)
-
Gregory, Brian_D (1)
-
Grünberg, Sebastian (1)
-
Hou, Ya-Ming (1)
-
Kleiner, Ralph (1)
-
Krishnan, Keerthana (1)
-
Li, Nan-Sheng (1)
-
Maharjan, Sunita (1)
-
McGuigan, Henri (1)
-
Mei, Qiaozhu (1)
-
Nakano, Yuko (1)
-
Nichols, Nicole (1)
-
Piccirilli, Joseph_A (1)
-
Sun, Zhiyi (1)
-
Wang, Yue (1)
-
Xu, Hua (1)
-
Yigit, Erbay (1)
-
Zheng, Kai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Li, Jiatong; Zheng, Kai; Xu, Hua; Mei, Qiaozhu; Wang, Yue (, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop)When developing topic classifiers for real-world applications, we begin by defining a set of meaningful topic labels. Ideally, an intelligent classifier can understand these labels right away and start classifying documents. Indeed, a human can confidently tell if an article is about science, politics, sports, or none of the above, after knowing just the class labels. We study the problem of training an initial topic classifier using only class labels. We investigate existing techniques for solving this problem and propose a simple but effective approach. Experiments on a variety of topic classification data sets show that learning from class labels can save significant initial labeling effort, essentially providing a” free” warm start to the topic classifier.more » « less
An official website of the United States government

Full Text Available